skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xing, L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 25, 2026
  2. Integration of third-party SDKs are essential in the development of mobile apps. However, the rise of in-app privacy threat against mobile SDKs — called cross-library data harvesting (XLDH), targets social media/platform SDKs (called social SDKs) that handles rich user data. Given the widespread integration of social SDKs in mobile apps, XLDH presents a significant privacy risk, as well as raising pressing concerns regarding legal compliance for app developers, social media/platform stakeholders, and policymakers. The emerging XLDH threat, coupled with the increasing demand for privacy and compliance in line with societal expectations, introduces unique challenges that cannot be addressed by existing protection methods against privacy threats or malicious code on mobile platforms. In response to the XLDH threats, in our study, we generalize and define the concept of privacypreserving social SDKs and their in-app usage, characterize fundamental challenges for combating the XLDH threat and ensuring privacy in design and utilization of social SDKs. We introduce a practical, clean-slate design and end-to-end systems, called PESP, to facilitate privacy-preserving social SDKs. Our thorough evaluation demonstrates its satisfactory effectiveness, performance overhead and practicability for widespread adoption. 
    more » « less
  3. The displacement of a suspension of particles by an immiscible fluid in a capillary tube or in porous media is a canonical configuration that finds application in a large number of natural and industrial applications, including water purification, dispersion of colloids and microplastics, coating and functionalization of tubings. The influence of particles dispersed in the fluid on the interfacial dynamics and on the properties of the liquid film left behind remain poorly understood. Here, we study the deposition of a coating film on the walls of a capillary tube induced by the translation of a suspension plug pushed by air. We identify the different deposition regimes as a function of the translation speed of the plug, the particle size, and the volume fraction of the suspension. The thickness of the coating film is characterized, and we show that similarly to dip coating, three coating regimes are observed, liquid only, heterogeneous, and thick films. We also show that, at first order, the thickness of films thicker than the particle diameter can be predicted using the effective viscosity of the suspension. Nevertheless, we also report that for large particles and concentrated suspensions, a shear-induced migration mechanism leads to local variations in volume fraction and modifies the deposited film thickness and composition. 
    more » « less
  4. Account deletion is an important way for users to exercise their right to delete. However, little work has been done to evaluate the usability of account deletion in mobile apps. In this paper, we conducted a 647-participants online survey covering two countries along with an additional 20-participants on-site interview to explore users’ awareness, practices, and expectations for mobile app account deletion. The studies were based on the account deletion model we proposed, which was summarized from an empirical measurement covering 60 mobile apps. The results reveal that although account deletion is highly demanded, users commonly keep zombie app accounts in practice due to the lack of awareness. Moreover, users’ understandings and expectations of account deletion are different from the current design of apps in many aspects. Our findings indicate that current ruleless implementations made consumers feel inconvenienced during the deletion process, especially the hidden entry and complex operation steps, which even blocked a non-negligible number of users exercising account deletion. Finally, we provide some design recommendations for making mobile app account deletion more usable for consumers. 
    more » « less
  5. Memory-hard functions (MHFs) are a key cryptographic primitive underlying the design of moderately expensive password hashing algorithms and egalitarian proofs of work. Over the past few years several increasingly stringent goals for an MHF have been proposed including the requirement that the MHF have high sequential space-time (ST) complexity, parallel space-time complexity, amortized area-time (aAT) complexity and sustained space complexity. Data-Independent Memory Hard Functions (iMHFs) are of special interest in the context of password hashing as they naturally resist side-channel attacks. iMHFs can be specified using a directed acyclic graph (DAG) $$G$$ with $N=2^n$ nodes and low indegree and the complexity of the iMHF can be analyzed using a pebbling game. Recently, Alwen et al. [CCS'17] constructed an DAG called DRSample which has aAT complexity at least $$\Omega\left( N^2/\log N\right)$$. Asymptotically DRSample outperformed all prior iMHF constructions including Argon2i, winner of the password hashing competition (aAT cost $$\mathcal{O}\left(N^{1.767}\right)$$), though the constants in these bounds are poorly understood. We show that the the greedy pebbling strategy of Boneh et al. [ASIACRYPT'16] is particularly effective against DRSample e.g., the aAT cost is $$\mathcal{O}\left( N^2/\log N\right)$$. In fact, our empirical analysis {\em reverses} the prior conclusion of Alwen et al. that DRSample provides stronger resistance to known pebbling attacks for practical values of $$N \leq 2^{24}$$. We construct a new iMHF candidate (DRSample+BRG) by using the bit-reversal graph to extend DRSample. We then prove that the construction is asymptotically optimal under every MHF criteria, and we empirically demonstrate that our iMHF provides the best resistance to {\em known} pebbling attacks. For example, we show that any parallel pebbling attack either has aAT cost $$\omega(N^2)$$ or requires at least $$\Omega(N)$$ steps with $$\Omega(N/\log N)$$ pebbles on the DAG. This makes our construction the first practical iMHF with a strong sustained space-complexity guarantee and immediately implies that any parallel pebbling has aAT complexity $$\Omega(N^2/\log N)$$. We also prove that any sequential pebbling (including the greedy pebbling attack) has aAT cost $$\Omega\left( N^2\right)$$ and, if a plausible conjecture holds, any parallel pebbling has aAT cost $$\Omega(N^2 \log \log N/\log N)$$ --- the best possible bound for an iMHF. We implement our new iMHF and demonstrate that it is just as fast as Argon2. Along the way we propose a simple modification to the Argon2 round function which increases an attacker's aAT cost by nearly an order of magnitude without increasing running time on a CPU. Finally, we give a pebbling reduction which proves that in the parallel random oracle model (PROM) the cost of evaluating an iMHF like Argon2i or DRSample+BRG is given by the pebbling cost of the underlying DAG. Prior pebbling reductions assumed that the iMHF round function concatenates input labels before hashing and did not apply to practical iMHFs such as Argon2i, DRSample or DRSample+BRG where input labels are instead XORed together. 
    more » « less